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Outline

• Surface Enhanced Spectroscopies (SES) 
• Introduction to plasmonic nanoantennas and its limitations

Part I: 

Part II: 
• Non-plasmonic HRI dielectric nanoantennas as an alternative to 

plasmonics for enhancing light (in near and far field) with low losses
- Electric and Magnetic Hot Spots

• Experimental demonstration of these novel type of nanoantennas
able to enhance Raman and Fluorescence:
- Heat assessment based on thermometry
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• What about enhancing light with directional control?
or switchable steering of light?

- Possible direct application in Selective sensing or SES
- Application in optical nano-circuitry

• Polarization control of high transmission / reflection switching by all-dielectric 
metasurfaces

Outline

• Dielectric - Metal hybrid structures for efficient THG

Part III: 

Part IV: 

• Examples of (bio) - sensors
• MO-Kerr effect in magnetoplasmonic

crystals
• DNA mapping with nanopipetes

(SERS,SEF)

Part V: 
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• Plasmonic antennas are widely studied due to their capability to convert 
free propagating radiation into highly enhanced-localized fields.

Glass Rod Metallic Rod Off Resonance Metallic Rod In Resonance

Neubrech, Aizpurua, et.al, PRL 101, 157403 (2008)

Part I: Introduction to SES and plasmonic nanoantennas
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• Idea in SES: Using the enhanced electromagnetic near 
and far field of a nanostructure oscillating in resonance

• Pre-condition for SES[#,*]: Matching molecular vibration 
of interest and resonant excitation of the nanoantenna

• Very important to tune the resonance precisely! And 
with strong near and Far field enhancement!! 

Part I: Introduction to SES and plasmonic nanoantennas
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[*] L. Novotny, PRL 98, 266802 (2007)
[#] F. Neubrech, Aizpurua et al., PRL 101, 157403 (2008)
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Surface Enhanced Spectroscopy (plasmonic nanoantennas)

• Plasmonic antennas are widely studied due to their capability to convert 
free propagating radiation into highly enhanced-localized fields.

• Shape of nanoantenna very important!! 

Neubrech, Aizpurua, et.al, PRL 101, 157403 (2008)

“Shape Matters: Plasmonic Nanoparticle Shape Enhances Interaction with Dielectric Substrate”, Nano Letters 11, 3531–3537 (2011).
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Surface Enhanced Spectroscopy (plasmonic nanoantennas)

• Plasmonic antennas are widely studied due to their capability to convert 
free propagating radiation into highly enhanced-localized fields.

• Shape of nanoantenna very important!! 

Neubrech, Aizpurua, et.al, PRL 101, 157403 (2008)
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Surface Enhanced Spectroscopy (plasmonic nanoantennas)

• Plasmonic antennas are widely studied due to their capability to convert 
free propagating radiation into highly enhanced-localized fields.

• Gap Antennas excel among other antenna structures due to the appearance 
of coupled oscillation modes which lead to interesting characteristics:
- Distinct Spectral Shifts and strong local field enhancements (broadly applied in SES) 

Neubrech, Aizpurua, et.al, PRL 101, 157403 (2008)

1µm
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Surface Enhanced Spectroscopy (plasmonic nanoantennas)

• Plasmonic antennas are widely studied due to their capability to convert 
free propagating radiation into highly enhanced-localized fields.

• Gap Antennas excel among other antenna structures due to the appearance 
of coupled oscillation modes which lead to interesting characteristics:
- Distinct Spectral Shifts and strong local field enhancements (broadly applied in SES) 

Neubrech, Aizpurua, et.al, PRL 101, 157403 (2008)

1µm
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• Idea in SES: Using the enhanced electromagnetic near 
and far field of a nanostructure oscillating in resonance

• Pre-condition for SES[#,*]: Matching molecular vibration 
of interest and resonant excitation of the nanoantenna

• Very important to tune the resonance precisely! And 
with strong near and Far field enhancement!! Why?

Part I: Introduction to SES and plasmonic nanoantennas
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[*] L. Novotny, PRL 98, 266802 (2007)
[#] F. Neubrech, Aizpurua et al., PRL 101, 157403 (2008)

12

Presented by Pablo Albella



• Idea in SES: Using the enhanced electromagnetic near 
and far field of a nanostructure oscillating in resonance

• Pre-condition for SES[#,*]: Matching molecular vibration 
of interest and resonant excitation of the nanoantenna

• Very important to tune the resonance precisely! And 
with strong near and Far field enhancement!! Why?

- Scattering will follow the 4th power SERS law
- Widely accepted, but not clearly shown why, until 2012* 

Part I: Introduction to SES and plasmonic nanoantennas
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[*] L. Novotny, PRL 98, 266802 (2007)
[#] F. Neubrech, Aizpurua et al., PRL 101, 157403 (2008)

* P. Alonso-González, P. Albella et. Al, Nature Comms 3, 684 (2012). 
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• Idea: Using the enhanced electromagnetic near and far 
field of a nanostructure oscillating in resonance

• Pre-condition for SES[#,*]: Matching molecular vibration 
of interest and resonant excitation of the nanoantenna

• Very important to tune the resonance precisely! And 
with strong near and Far field enhancement!! 

- Scattering intensity will follow the 4th power SERS law
- Accepted, used to be intuitive but why? 

Part I: Introduction to SES and plasmonic nanoantennas
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[*] L. Novotny, PRL 98, 266802 (2007)
[#] F. Neubrech, Aizpurua et al., PRL 101, 157403 (2008)

• All that is possible, because the Scattered intensity I scales with the 4th

power of the local field enhancement at the metal surface. 

• Direct and Quantitative verification of this law and its underlying 
electromagnetic scattering mechanism was more than a challenge to 
tackle. 

• Why? Difficulties arise from the complex processes typically involved 
in surface-enhanced spectroscopies:

• Chemical bonding
• Charge transfer between object and metal nanostructures

• How can we isolate the electromagnetic mechanism?
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Surface Ehnanced Spectroscopy
Schematics of a surface-enhanced light scattering Process

The underlying electromagnetic mechanism of 
the signal enhancement is challenging to trace 
experimentally.

Schemmatics of  typical Antenna-
enhanced Raman process (SERS)

Elastic antenna-enhanced 
scattering process

Inelastic scattering process from an object 
(O) in the presence of a metal nanostructure

15
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Surface Ehnanced Spectroscopy
Schematics of a surface-enhanced light scattering Process

(ω1 = ω2 = ω)

Schemmatics of  typical Antenna-
enhanced Raman process (SERS)

Elastic antenna-enhanced 
scattering process

By relying on elastic scattering (s-SNOM) we were 
able to isolate the electromagnetic effect!! 

Inelastic scattering process from an object 
(O) in the presence of a metal nanostructure

16
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IR Spectroscopy of plasmonic antennas with S-SNOM. How?

L fixed

+ -
Ein

IR Light λ = 11.1 µm fixed

+ -

L

Spectroscopy in frequency is equivalent
to spectroscopy in length.

+ -
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Surface Ehnanced Spectroscopy - Near Field Mapping

AIM: To relate the scattered field En with the local 
field enhancement f and proof that En = f 2 In= f 4

1. We measure |En| and Δϕn at the hot spot (x)

2. We compare them to the numerically calculated 
|f| and Δϕf of the local field enhancement. 

We clearly see the resonance behaviour, with the 
resonance appearing at L = 3.7 μm.

x
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s-SNOM spectra do not agree with calculated near-field spectra!!
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Square of the near field agrees well with s-SNOM data
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Single Rod

Calculated near-field enhancement f
Measured s-SNOM amplitude
Squared calc. near-field enhancement f2

Calculated near-field phase ϕ
Measured s-SNOM phase
Doubled calc. near-field phase 2ϕ
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* P. Alonso-González, P. Albella et. Al, Nature Comms 3, 684 (2012). 
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Parametric representation (Intensity and Phase)

Intensity Phase Shift

Slope = 4.08 Slope = 1.85

Single Rod + -

L

+ -
x
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How we can understand this observation?

Elastic antenna-enhanced 
scattering process

Antenna-enhanced Raman 
(inelastic) process (SERS)

22
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How we can understand this observation?

Double role of the antenna: illuminating 
the object and scattering off the object.

field enhancement f
is a complex value !
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Elastic antenna-enhanced 
scattering process

Antenna-enhanced Raman 
(inelastic) process (SERS)
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How we can understand this observation? Other view…
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• Idea in SES: Using the enhanced electromagnetic near 
and far field of a nanostructure oscillating in resonance

• Pre-condition for SES[#,*]: Matching molecular vibration 
of interest and resonant excitation of the nanoantenna

• Very important to tune the resonance precisely! And 
with strong near and Far field enhancement!! Why?

- Scattering will follow the 4th power SERS law
- Widely accepted, but not clearly shown why, until 2012* 

Part I: Introduction to SES and plasmonic nanoantennas
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[*] L. Novotny, PRL 98, 266802 (2007)
[#] F. Neubrech, Aizpurua et al., PRL 101, 157403 (2008)

* P. Alonso-González, P. Albella et. Al, Nature Comms 3, 684 (2012). 
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• Idea in SES: Using the enhanced electromagnetic near 
and far field of a nanostructure oscillating in resonance

• Pre-condition for SES[#,*]: Matching molecular vibration 
of interest and resonant excitation of the nanoantenna

• Very important to tune the resonance precisely! And 
with strong near and Far field enhancement!! Why?

- Scattering will follow the 4th power SERS law
- Widely accepted, but not clearly shown why, until 2012* 

• Good results in SERS, SEIRA and SEF applications, have 
been reported over the last 20 years…

• All these is well known! 

Part I: Introduction to SES and plasmonic nanoantennas
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• Idea in SES: Using the enhanced electromagnetic near 
and far field of a nanostructure oscillating in resonance

• Pre-condition for SES[#,*]: Matching molecular vibration 
of interest and resonant excitation of the nanoantenna

• Very important to tune the resonance precisely! And 
with strong near and Far field enhancement!! Why?

- Scattering intensity will follow the 4th power SERS law
- Widely accepted, but not clearly shown why, until 2012* 

• Good results in SERS, SEIRA and SEF applications, have 
been reported over the last 20 years…

• All these is well known! But what about losses and 
Heating issues in the nanoantennas?

• Can dielectric nanoantennas play a new role in SES?...

Part I: Introduction to SES and plasmonic nanoantennas
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Outline

• Surface Enhanced Spectroscopies (SES) 
• Introduction to plasmonic nanoantennas and its limitations

Part I: 

• Non-plasmonic HRI dielectric nanoantennas as an alternative to 
plasmonics for enhancing light (in near and far field) with low losses
- Electric and Magnetic Hot Spots

• Experimental demonstration of these novel type of nanoantennas
able to enhance Raman and Fluorescence:
- Heat assessment based on thermometry

Part II: 
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Influence of losses/heat radiation to the efficiency of 
Surface Enhance Spectroscopies

• An effect of the losses in plasmonic structures, and an aspect quite often 
neglected with respect to SES, is the local heating of the particle due to the 
absorption of incident radiation and the transduction into thermal energy.

• Theoretical and experimental studies have reported temperature increases
ranging from 50 K under continuous excitation to as high as 1000 K using
pulsed light sources [#].

[*] M. D. King, J. Phys. Chem. C 2008, 112, 11751
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Influence of losses/heat radiation to the efficiency of 
Surface Enhance Spectroscopies

• An effect of the losses in plasmonic structures, and an aspect quite often neglected 
with respect to SES, is the local heating of the particle due to the absorption of 
incident radiation and the transduction into thermal energy.

• Theoretical and experimental studies have reported temperature increases ranging
from 50 K under continuous excitation to as high as 1000 K using pulsed light sources
[#].

• This increase in the particle T, and in turn in the T of the surrounding medium, can 
directly influence the SERS and SEF signals. 

- This fact has been attributed to several processes (thermal annealing, modified 
adsorption/desorption kinetics of surface molecules, and changes in the dielectric properties 
of the medium and NP) [*].

[*] M. D. King, J. Phys. Chem. C 2008, 112, 11751
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Plasmonic nanoantennas show strong hot spots but…

• Metals (plasmonics) can offer very high relative field enhancements
- However, they exhibit high Ohmic losses that lead to local heating

• Fluorescence quenching without spacer layers [*]
• Can cause localised damage to the sample or molecules under study [**]

• Au NPs functionalised with DNA chains acting as spacer between fluorophore and 
nanoantenna. 

- SEF significant for distances larger than 10nm

[*] P. Holzmeister et al. Nano Letters, (4), 3189–3195, (2012). [**] L. Novotny et al. Phys Rev Lett. 96, 113002 (2006)
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Plasmonic nanoantennas show strong hot spots but…

• Metals (plasmonics) can offer very high relative field enhancements
- However, they exhibit high Ohmic losses that lead to local heating

• Fluorescence quenching without spacer layers [*]
• Can cause localised damage to the sample or molecules under study [**]

• Au NPs functionalised with DNA chains acting as spacer between fluorophore and 
nanoantenna. 

- SEF significant for distances larger than 10nm

• This would also damp the Raman strongly. Novotny quantitatively measured the 
continuous transition from fluorescence enhancement to fluorescence quenching on a 
single molecule. 

[*] P. Holzmeister et al. Nano Letters, (4), 3189–3195, (2012). [**] L. Novotny et al. Phys Rev Lett. 96, 113002 (2006)
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Alternatives to address this problem

• Metals (plasmonics) can offer very high relative field enhancements
- However, they exhibit high Ohmic losses that lead to local heating

• Fluorescence quenching without spacer layers [*]
• Can cause localised damage to the sample or molecules under study [**]

• The question is: Can we get around these issues? Is it possible to achieve enhanced 
NF and FF but under a low loss/heat response?

[*] P. Holzmeister et al. Nano Letters, (4), 3189–3195, (2012). [**] L. Novotny et al. Phys Rev Lett. 96, 113002 (2006)
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Alternatives to address this problem

• Metals (plasmonics) can offer very high relative field enhancements
- However, they exhibit high Ohmic losses that lead to local heating

• Fluorescence quenching without spacer layers [*]
• Can cause localised damage to the sample or molecules under study [**]

• The question is: Can we get around these issues? Is it possible to achieve enhanced 
NF and FF but under a low loss/heat response?

• The answer is: Yes, Non-Plasmonic Nanoantennas can!
- Nanostructures made of dielectrics with high refractive index - Si, Ge, GaAs, GaP
- Important to note that we refer to individual structures, not metasurfaces!

[*] P. Holzmeister et al. Nano Letters, (4), 3189–3195, (2012). [**] L. Novotny et al. Phys Rev Lett. 96, 113002 (2006)
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A bit of literature review on HRI dielectrics…
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A bit of literature review on HRI dielectrics…

• Theoretically revealed magnetic dipolar 
response in silicon NP arrays… 

• but no addressing NF or origin of this.
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A bit of literature review on HRI dielectrics…

• Theoretically revealed magnetic dipolar 
response in silicon NP arrays… 

• but no addressing NF or origin of this.

• Theoretically studied how the rotation 
of displacement current induces 
magnetic responses and analysed near 
fields with a single silicon sphere
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A bit of literature review on HRI dielectrics…

• Theoretically revealed magnetic dipolar 
response in silicon NP arrays… 

• but no addressing NF or origin of this.

• Theoretically studied how the rotation 
of displacement current induces 
magnetic responses and analysed near 
fields with a single silicon sphere

• Theoretically revealed that silicon 
sphere can fulfil the Kerker’s conditions
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A bit of literature review on HRI dielectrics…

• Theoretically revealed magnetic dipolar 
response in silicon NP arrays… 

• but no addressing NF or origin of this.

• Theoretically studied how the rotation 
of displacement current induces 
magnetic responses and analysed near 
fields with a single silicon sphere

• Theoretically revealed that silicon 
sphere can fulfil the Kerker’s conditions

• Theoretically explored the concept of coupling 
dielectric antennas with electric or magnetic 
dipolar emitter
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A bit of literature review on HRI dielectrics…

• Theoretically revealed magnetic dipolar 
response in silicon NP arrays… 

• but no addressing NF or origin of this.

• Theoretically studied how the rotation 
of displacement current induces 
magnetic responses and analysed near 
fields with a single silicon sphere

• Theoretically revealed that silicon 
sphere can fulfil the Kerker’s conditions

• Theoretically explored the concept of coupling 
dielectric antennas with electric or magnetic 
dipolar emitter

• Experimentally demonstrated  those 
findings either in the visible, near IR  or 
microwave…
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Our aim is: Non-Plasmonic (all-dielectric) Nanoanntenas for SES

MD

Theoretical Proposals

First Experimental Proof

41
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*A. Garcia-Etxarri et al., Opt. Express. 19, 4815 (2011)

Scattering of Si particle (r = 230 nm)

• Strong magnetic resonances

• Field enhancement inside particle

Non-Plasmonic HRI Nanoantennas

42
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• In 2013 we theoretically showed how Silicon dimers offer not only, near and far 
field electric enhancement but also magnetic, both under very low-losses [#].

*A. Garcia-Etxarri et al., Opt. Express. 19, 4815 (2011)

Scattering of Si particle (r = 230 nm)

• Low energy losses

• Strong magnetic resonances

• Field enhancement inside particle

[#] P. Albella, M.A. Poyli, M.Schmidt, Stefan A. Maier, F. Moreno, J.J. Sáenz, J.Aizpurua, J. Phys Chem C, 117, 13573 (2013)

Non-Plasmonic HRI Nanoantennas: Hot Spots and FF enhancement
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Non-Plasmonic HRI Nanoantennas: Hot Spots and FF enhancement

• In 2013 we theoretically showed how Silicon dimers offer not only, near 
and far field electric enhancement but also magnetic, both under very 
low-losses [#].

• The Near and Far Field Electric and Magnetic Field enhancements are 
due to the interaction between electric and magnetic Mie modes, and 
can be spectrally tuned.

[#] P. Albella, M.A. Poyli, M.K. Schmidt, Stefan A. Maier, F. Moreno, J.J. Sáenz & J. Aizpurua, J. Phys Chem C, 117, 13573 (2013)
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HRI Nanoantennas in the VIS: Hot Spots and FF Enhancement

Near Field Response

• Au dimers offer better NF enhancement when compared with the Non-plasmonic ones.

*P. Albella, R. Alcaraz de la Osa, F. Moreno and S. A. Maier. ACS Photonics 1, 524-529 (2014)
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HRI Nanoantennas in the VIS: Hot Spots and FF Enhancement

* P. Alonso-González, P. Albella et. Al, Nature Comms 3, 684 (2012). 
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HRI Nanoantennas in the VIS: Hot Spots and FF Enhancement

Near Field Response

• Au dimers offer better NF enhancement when compared with the Non-plasmonic ones.
Far Field Response

• HRI antennas  show larger FF enhancement.
• More Scattering efficiency together with the possibility of increasing the incident power 

can compensate the smaller NF enhancement in SES applications 
*P. Albella, R. Alcaraz de la Osa, F. Moreno and S. A. Maier. ACS Photonics 1, 524-529 (2014)
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Theoretical Proposal
Non-Plasmonic nanoantenas: low local temperature

• We have seen that HRI dielectric nanoantennas can generate hot spots and good 
scattering efficiency.

• The idea of looking for alternatives to plasmonic nanoantennas came up from the 
large absorption and therefore heat that they generate in their surrounding

48
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Theoretical Proposal
Non-Plasmonic nanoantenas: low local temperature

• We have seen that HRI dielectric nanoantennas can generate hot spots and good 
scattering efficiency.

• The idea of looking for alternatives to plasmonic nanoantennas came up from the 
large absorption and therefore heat that they generate in their surrounding

• Metals can produce extreme changes in local temperature (implications for SERS and 
SEF)

• Damage to antennas and molecules
• Can modify the local environment (n) and/or possibly degrade the performance

MD

MD ACS Photonics 1, 524-529 (2014)
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Experimental Demonstration: 
Low-Heat SERS and SEF with Si-Dimers

• Resonance is a mix between electric and magnetic modes in Si (purely electric in Au)

• Reasonable NF enhancement for Si, although not as high as Au (but FF enhancement 
and hot spot volume compensates this).

Si Dimers D=220nm, h=200nm, gap~20nm fabricated 
with reactive ion etching on Si-on-insulator wafers

SEM image 

Far and Near Field Response

PMMA

*M. Caldarola, P. Albella et al, Nature Comms 6:7915 (2015)
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Experimental Demonstration: 
Low-Heat SERS and SEF with Si-Dimers

• Resonance is a mix between electric and magnetic modes in Si (purely electric in Au)

• Reasonable NF enhancement for Si, although not as high as Au (but FF enhancement 
and hot spot volume compensates this).

• Higher E/E0 can be achieved by engineering future dielectric nanoantenna
configurations

Si Dimers D=220nm, h=200nm, gap~20nm fabricated 
with reactive ion etching on Si-on-insulator wafers

SEM image 

Far and Near Field Response

PMMA

E/E0 ~30

*M. Caldarola, P. Albella et al, Nature Comms 6:7915 (2015)
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Experimental proof of SERS and SEF with the same Si-Dimers

• Sample shows both enhanced Raman scattering and enhanced fluorescence

Surface-Enhanced Raman (SERS)

(Emax/E0)4

PMMA molecules

Surface-Enhanced Fluorescence(SEF)

Nile Red molecules
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Assessment of Local Heat based on Molecular thermometry

• Local heat generation around the NA was 
determined using molecular thermometry.

• 2 lasers: 
- Heating laser on resonance with the NA.
- Imaging laser

• Spectral shifts and reduction in intensity of 
nile red molecules upon increase in T.

Heating laser λ=860-890nm
Low power Imaging laser λ=532nm

Reference: fluorescence images without the heating laser turned on. 
• Si produce enhanced fluorescence larger than Au

*M. Caldarola, P. Albella et al, Nature Comms 6:7915 (2015)
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Assessment of Local Heat based on Molecular thermometry

• Local heat generation around the NA was 
determined using molecular thermometry.

• 2 lasers: 
- Heating laser on resonance with the NA.
- Imaging laser

• Spectral shifts and reduction in intensity of 
nile red molecules upon increase in T.

Heating laser λ=860-890nm
Low power Imaging laser λ=532nm

Reference: fluorescence images without the heating laser turned on. 
• Si produce enhanced fluorescence larger than Au

Fluorescence images with the heating laser on at 6 mW µm-2

• Intensity clear drops for the Au antennas.

*M. Caldarola, P. Albella et al, Nature Comms 6:7915 (2015)
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Local Heat Mapping results: Gold vs Si Nanoantennas

• Si antennas show little heating while substantial heating is observed for 
Au antennas

• Modelling the heating and extracting Tgap indicates local temperatures 
of > 100 °C at high powers.

• Very good agreement with theory (dotted lines). 
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Summary of Part II

• We have shown a novel type of nanoantenna based on all-dielectric materials (Si in 
this case)

• These nanoantennas enhanced the Raman scattering of a polymer thin film by a factor 
of ~103 and also allowed surface enhanced fluorescence by a factor of ~2x103

- avoiding the well-known fluorescence quenching effects observed for metallic 
structures when no spacer layers are used. 

• Molecular thermometry demonstrate that dielectric nanoantennas produce 
ultra-low heating, thus overcoming one of the main drawbacks of traditional 
plasmonic materials.

- important advances in many fields can be foreseen due to almost no-restrictions 
in the power that can be delivered to these non-plasmonic nanoscale devices 

- Some examples: nanoelectronics or unperturbed sensing of nanoemitters
behaviour by SES.
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• What about enhancing light with directional control?
or switchable steering of light?

- Possible direct application in Selective sensing or SES
- Application in optical nano-circuitry

• Polarization control of high transmission / reflection switching by all-dielectric 
metasurfaces

Outline

• Dielectric - Metal hybrid structures for efficient THG

Part III: 

Part IV: 

• Examples of (bio) - sensors
• MO-Kerr effect in magnetoplasmonic

crystals
• DNA mapping with nanopipetes

(SERS,SEF)

Part V: 
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Introduction to Unidirectional forward scattering 
(Kerker’s first condition)

• When the first Mie coefficients, a1 and b1, corresponding to the electric and magnetic 
dipolar resonances are equal, the backward scattering is suppressed (1st Kerker condition)

- Unidirectional forward scattering is achieved due to the interference between the electric and 
magnetic resonances

A. Gracia-Etxarri et al., Opt. Express. 19, 4815 (2011)

x

Si

58

Presented by Pablo Albella



Introduction to Unidirectional forward scattering 
(Kerker’s first condition)

• When the first Mie coefficients, a1 and b1, corresponding to the electric and magnetic 
dipolar resonances are equal, the backward scattering is suppressed (1st Kerker condition)

- Unidirectional forward scattering is achieved due to the interference between the electric and 
magnetic resonances

J.M. Geffrin, B. García-Cámara, R. Gómez- Medina, P. Albella, L.S. Froufe-Pérez, C.Eyraud,
A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J.J. Sáenz and F. Moreno, Nat. Comm. 3, 1171 (2012)

First demonstrated in the microwave
(radiation patterns measured in Fresnel Institute (anechoic chamber)

A. Gracia-Etxarri et al., Opt. Express. 19, 4815 (2011)

x

Si
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Introduction to Unidirectional forward scattering 
(Kerker’s first condition)

• When the first Mie coefficients, a1 and b1, corresponding to the electric and magnetic 
dipolar resonances are equal, the backward scattering is suppressed (1st Kerker condition)

- Unidirectional forward scattering is achieved due to the interference between the electric and 
magnetic resonances

A. Gracia-Etxarri et al., Opt. Express. 19, 4815 (2011)

x

Si

First demonstrated in the microwave
(radiation patterns measured in Fresnel Institute (anechoic chamber)

Y. Fu et al. Nat. Comm. 4, 1527 (2013)

Low scattering efficiency
(electric and magnetic resonance far from each other)

J.M. Geffrin, B. García-Cámara, R. Gómez- Medina, P. Albella, L.S. Froufe-Pérez, C.Eyraud,
A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J.J. Sáenz and F. Moreno, Nat. Comm. 3, 1171 (2012)
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Some attempts to increase the scattering efficiency…

Boris S. Luk’yanchuk et al. ACS Photonics 2015, 2, 993−999

Spheroids and low aspect ratio disks can increase the efficiency

Measured optical transmittance and reflectance spectra for Si 
nanodisks embedded into a low-index medium.

I. Staude et al. ACS Nano 2013, 7, 7824–7832
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F/B ratio based on optimized single disk with low aspect ratio

I. Staude et al. ACS Nano 2013, 7, 7824–7832
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Asymmetric dimer configuration to enhance and direct light

• Idea: combine HRI dielectric nanoparticles of different sizes. 
- the position and intensity of the electric and magnetic resonance of dielectric 

particles strongly depend on their sizes. 
- Tuning them to achieve overlapping of those resonances could open up new 

possibilities for novel optical properties. 
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Wavelength

Sc
at

te
rin

g 
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Optimizing dimer size to achieve first kerker condition

Asymmetric dimer

Silicon Dimer: D1 = 165 nm, D2 = 225 nm
Gap = 20nm

Overlap of electric and magnetic resonance

Scattering spectra of single spheres
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Verification of the first Kerker condition

• Electric and magnetic dipoles were calculated considering the electric-electric, 
magnetic-magnetic and electric-magnetic dipole couplings.

- Based on the Analytical dipole-dipole model proposed in [*]

[*] P. Albella et al., J. Phys. Chem. C 117, 13573 (2013)
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at λ = 650 nm, verifying the achievement of the first Kerker condition. 
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F/B ratio of the asymmetric dimer:
comparison to a single disk in low aspect ratio
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(20nm gap)

Forward / backward ratio comparable between the asymmetric dimer and optimised single disk.

• DF Scattering CS Calculation (Collection of scattered field on the forward and backward hemisphere)

* I. Staude, A. E. et.al, ACS Nano, 2013, 7, 7824–7832
# T. Shibanuma, P. Albella and S. A. Maier. Nanoscale, 2016, 8 ,14184

Basic Principle: No substrate
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F/B ratio of the asymmetric dimer:
comparison to a single disk in low aspect ratio
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• DF Scattering CS Calculation (Collection of scattered field on the forward and backward hemisphere)

* I. Staude, A. E. et.al, ACS Nano, 2013, 7, 7824–7832
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# T. Shibanuma, P. Albella and S. A. Maier. Nanoscale, 2016, 8 ,14184
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F/B ratio of the asymmetric dimer:
comparison to a single disk in low aspect ratio
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Forward / backward ratio comparable between the asymmetric dimer and optimised single disk.

• DF Scattering CS Calculation (Collection of scattered field on the forward and backward hemisphere)

* I. Staude, A. E. et.al, ACS Nano, 2013, 7, 7824–7832
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High F/B ratio of the asymmetric dimer and Presence of Hot Spot

Using asymmetric silicon dimer
Electric field mapping at λ = 647 nm Scattering patterns

D1 = 150 nm, D2 = 230 nm, d = 8 nm

# T. Shibanuma, P. Albella and S. A. Maier, Nanoscale 2016, 8 ,14184

• This hot spot can not be obtained in single disk or 
spheroid cases.

• Unidirectional forward scattering with high intensity 
can be achieved

• It can be used as a novel nanoantenna for directional 
SERS or SEF
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• Dark field spectroscopy for measurement 
of scattering from single nanoantenna

• This setup enables us to measure only 
scattering, excluding incidence.

• Fabricated sample and forward / backward 
scattering

Experimental demonstration  

Incidence: θi = 60-70 °
Scattering: θs = 0-53 °

Peak and valley observed in forward and backward 
scattering, respectively.
 Unidirectional forward scattering with high efficiency

# T. Shibanuma, P. Albella and S. A. Maier, Nanoscale 2016, 8 ,14184
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Experimental demonstration: 
Comparison with theory and influence of incidence angle  

# T. Shibanuma, P. Albella and S. A. Maier, Nanoscale 2016, 8 ,14184
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As incident angle decreased, the F/B ratio 
increased and reached around 15 with nearly 
normal incidence.
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Extending the idea for multi-wavelength and broadband response 

Three Si spheres aligned with diameter of 165 nm, 225 nm, and 310 nm
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Polarization control of high transmission / reflection 
switching by all-dielectric metasurfaces

• When dielectric nanoantennas are aligned periodically, they can act as a metasurface
providing with an effective permittivity. 

When the two peaks overlap,
 ε ∼ µ 
 High transmission

I. Staude et al., ACS Nano, 7, 7824 (2013)
M. Decker et al., Adv. Opt. Mater., 3, 813 (2015)

(ε, µ: effective permittivity and permeability of dielectric metasurface)

When the two peaks separate,
 ε and µ have opposite signs
 High reflection
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Polarization control of high transmission / reflection 
switching by all-dielectric metasurfaces

• Basic idea
- Spectral overlap of electric and magnetic dipoles  High transmission
- Spectral separation of electric and magnetic dipoles  High reflectance
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Polarization control of high transmission / reflection 
switching by all-dielectric metasurfaces

• Basic idea
- Spectral overlap of electric and magnetic dipoles  High transmission
- Spectral separation of electric and magnetic dipoles  High reflectance

• Array of the Si dimer
- Polarization along the dimer axis Mode hybridization induces spectral overlapping

Scattering spectra of Si sphere dimer
Diameter: 300 nm, Gap: 10 nm

En
er

gy

ED ED

MD MD

Hybridization
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Polarization control of high transmission / reflection 
switching by all-dielectric metasurfaces

• Basic idea
- Spectral overlap of electric and magnetic dipoles  High transmission
- Spectral separation of electric and magnetic dipoles  High reflectance

• Array of the Si dimer
- Polarization perpendicular to dimer axis Mode hybridization induces spectral separation

Scattering spectra of Si sphere dimer
Diameter: 300 nm, Gap: 10 nm

Hybridization

ED ED

MD MD

En
er

gy
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Proof of concept: array of nanospherical dimers

Si spherical dimer in air

High R <-> High T switching around λ = 975 nm

FDTD calculation

 

 x
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Experimental demonstration: array of nanocylindrical dimers

Array of cylindrical Si dimer on sapphire substrate

FDTD calculation

At λ = 1688 nm
TM: 99 % transmittance
TE: 95 % reflectance

Experiment (FTIR)

At λ = 1718 nm
TM: 86 % transmittance
TE: 77 % reflectance
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What about: switchable and tunable steering of light WITH Low Loss

• Theory and Basic Principle: Sci. Rep 5:18322 (2015)

• Experimental demonstration: ACS Photonics 4, 489-494 (2017)
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Tuneable directional scattering either to left or right direction

• Next topic is about directional control of scattering in the left or right 
direction from the incident axis

• Most Scattering into the substrate.

• Control of the scattering light along the substrate would be preferable 
for some applications (e.g. optical nanocircuitry)

Mikael Käll et al. Nat. Commun. 2, 481 (2011)

Bimetallic configuration V shape nanoantenna

Paul van Dorpe et al. Nano. Lett. 16, 4396 (2016)
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Basic idea to switch in-plane scattering either left or right 

Using asymmetric dimer

• Drastic phase shift by dimensions
• Tuneable from visible to microwave

Extinction Calculated by the dipole-dipole model [*]

Dimer of Silicon Spheres: 
D1 = 150 nm, D2 = 230 nm, d = 8nm

[*] P. Albella et al., J. Phys. Chem. C 117, 13573 (2013)
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Basic idea to switch in-plane scattering either left or right 

• Scattering direction defined as the angle where maximum scattering is achieved.

• Direction can be changed depending on the wavelength of excitation.

• Light scattered to either left (+18°) or right (-52°) depending on the wavelength.

*P. Albella, T. Shibanuma, Stefan A. Maier. Sci. Rep 5:18322 (2015)
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Asymmetric silicon dimer for tuneable scattering along the substrate

𝐤𝐤

𝐄𝐄𝟎𝟎

𝐇𝐇𝟎𝟎

Interference between the excited magnetic dipoles results in the tuneable scattering

Far field pattern in the xy plane calculated by FDTDSi dimer on a silica substrate

*P. Albella, T. Shibanuma, Stefan A. Maier. Sci. Rep 5:18322 (2015)
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Experimental demonstration

• To experimentally demonstrate the tunable directional scattering along the 
substrate, a BFP (Back focal plane imaging) technique combined with a prism 
coupling was designed.

• Basically, an evanescent wave is generated by total internal reflection and travels 
along the substrate until it excites the nanoantenna. 

• The scattering lobe is then observed with high NA objective. 

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella and S. A. Maier, ACS Photonics 4, 489-494 (2017)
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Experimental results vs numerical predictions

Scattering direction can be tuned
by the excitation wavelength

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella and S. A. Maier, ACS Photonics 4, 489-494 (2017)
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This idea inspired recent works (optical computing)

[4] J.J. Finley et al. Nano Lett., 2016, 16 (1), pp 152–156Belov and Alu, Laser Photonics Rev. 10, No. 6, 1009 (2016)

Nanoantenna Changes Direction of Light 
and the Prospects of Optical Computing

Scattering cross-section of isolated nanoparticles 
with increasing Electron Hole pair density in the 
resonant particle
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• What about enhancing light with directional control?
or switchable steering of light?

- Possible direct application in Selective sensing or SES
- Application in optical nano-circuitry

• Polarization control of high transmission / reflection switching by all-dielectric 
metasurfaces

Outline

• Dielectric - Metal hybrid structures for efficient THG

Part III: 

Part IV: 

• Examples of (bio) - sensors
• MO-Kerr effect in magnetoplasmonic

crystals
• DNA mapping with nanopipetes

(SERS,SEF)

Part V: 
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Introduction to THG

• Third-order susceptibilities of metals are among the highest in nature
- enables, in principle, excellent THG performances. 

• Skin depth of conductors is generally small 
- any third-order nonlinear effect from metals results in strongly reduced 

efficiencies. 

• To further enhance the THG process, plasmonic nanostructures have 
been combined with non-metallic nm-scaled nonlinear materials.

- For example, by placing an ITO nanoparticle at the hot spot of a metallic 
nanodimer
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Metal – dielectric hybrid structures for efficient THG

• Third harmonic generation (THG)  from high ref index dielectric nanostructures

• Efficiency is still low, because of the low electric field enhancement in dielectric structures

Y. Yang et al. Nano Lett., 15, 7388 (2015)
M. R. Shcherbakov et al. Nano Lett., 14, 6488 (2014)

L. Wang et al. Nanoscale., 9, 2201 (2017)

ηTH ~ 0.0002 %

Si
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Metal – dielectric hybrid structures for efficient THG

• Third harmonic generation (THG)  from high ref index dielectric nanostructures

• Efficiency is still low, because of the low electric field enhancement in dielectric structures

• Ge has shown conversion efficiencies of ~0.001% at 550 nm (green)
• Performance cannot be extended to the blue region of the visible spectrum, due to high 

absorption of Ge below 1600 nm

Y. Yang et al. Nano Lett., 15, 7388 (2015)
M. R. Shcherbakov et al. Nano Lett., 14, 6488 (2014)

L. Wang et al. Nanoscale., 9, 2201 (2017)

Ge

ηTH ~ 0.001 %
G. Grinblat et al. ACS Nano, 11, 953 (2017)
G. Grinblat et al. Nano Lett., 16, 4635 (2016)

Si

ηTH ~ 0.0002 %
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How to improve the TH conversion efficiency?

• In Third order nonlinear phenomena, the density of third harmonic dipoles are 
basically proportional to the third power of electric field (THG intensity is proportional 
to the 6th power of E). 

• The idea is combining a metallic ring with a dielectric nanostructurecore to make hybrid one.
- As we showed in [*] Plasmonic resonance of a Au nanoring can enhance the E field in a 

relatively large volume. 
• This can boost the anapole mode supported by a Si nanodisk

- strongly enhancing the electric field inside the large third-order susceptibility dielectric

[*] A. Rakovich, P. Albella and S. A. Maier. ACS Nano, 9, 2648 (2015)

Metal – dielectric hybrid structure
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Excitation of anapole mode for intense electric field

• To predict THG capabilities of the hybrid structure
- we need to evaluate its ability to concentrate the electric field inside the dielectric core 
- by measuring and calculating first the extinction (a clear valley observed around 1325 nm)
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Excitation of anapole mode for intense electric field

• To predict THG capabilities of the hybrid structure
- we need to evaluate its ability to concentrate the electric field inside the dielectric core 
- by measuring and calculating first the extinction (a clear valley observed around 1325 nm)

• we numerically explore the normalized electric field intensity (|E|2/|E0|2) averaged 
within the Si nanodisk volume, using the following expression:

- @ the wavelength of the extinction valley, drastically increased.
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Let’s double check the excitation of anapole mode 
and the increase in F

Au nanoring can enhance the electric field inside.

Si disk
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Let’s double check the excitation of anapole mode 
and the increase in F

Au nanoring can enhance the electric field inside.

• Comparing the isolated structures with the hybrid structure shows E/E0 ~ 9.
• The shape of the distribution is quite unique, (anapole mode). Its physical origin has 

been theoretically attributed [*] to the destructive interference in the far field 
between the radiation patterns produced by the electric and toroidal dipole modes.

• This provides a route to maximize the electric field energy inside the particle

=
+

-

+
[*] Miroshnichenko, A. E et al. Nat. Commun. 2015, 6, 8069. 

Si disk
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• The hybrid structure shows very strong TH intensity, 1000 times higher 
than single Si disks, and 100000 times higher than the Au ring

TH conversion efficiency

T. Shibanuma, G. Grinblat, P. Albella and S. A. Maier, Nano Lett. 2017, 17, 2647−2651
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• The hybrid structure shows very strong TH intensity, 1000 times higher 
than single Si disks, and 100000 times higher than the Au ring

• By sweeping the pumping power, we found the slope of 3 in the logarithm 
scale of TH intensity, confirming that this is third harmonic generation
- The TH conversion efficiency of the hybrid structure: ηTH ~ 0.007 %
- This is as far as we know the largest TH efficiency from a nanoantenna.

TH conversion efficiency

T. Shibanuma, G. Grinblat, P. Albella and S. A. Maier, Nano Lett. 2017, 17, 2647−2651
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Very important: scalability offers THG throughout entire VIS

THG enhancement can be achieved throughout the visible regime

Experimental TH intensity Simulated TH intensity (F3)

T. Shibanuma, G. Grinblat, P. Albella and S. A. Maier, Nano Lett. 2017, 17, 2647−2651
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Summary of Part IV

• Hybrid structures can generate strong TH emission in the optical range.

• The anapole mode supported by the dielectric core, boosted by the 
plasmonic resonance of the surrounding metal nanoparticle, produced 
high electric field enhancement within the Si nanostructure.

• TH conversion efficiency can be drastically improved due to the 
coupling of the individual components defining the hybrid, (up to 
0.007%). 

• The optimum emission wavelength can be tuned from the blue to the 
red region of the visible spectrum by suitably adapting the nanosystem
geometrical dimensions. 
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• What about enhancing light with directional control?
or switchable steering of light?

- Possible direct application in Selective sensing or SES
- Application in optical nano-circuitry

• Polarization control of high transmission / reflection switching by all-dielectric 
metasurfaces

Outline

• Dielectric - Metal hybrid structures for efficient THG

Part III: 

Part IV: 

• Examples of (bio) - sensors
• MO-Kerr effect in magnetoplasmonic

crystals
• DNA mapping with nanopipetes

(SERS,SEF)

Part V: 
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• An example of a simple yet highly sensitive sensing platform can be made as a one-dimensional 
magneto plasmonic crystal [1]

• Sensitivity of an SPR-based sensor depends on where the EM field is most amplified 
- IDEA: develop a magnetoplasmonic crystal to excite SPRs mainly localized at the analyte region. 

• This is done optimizing the geometry of the grating and the MO metallic slab at the λinc [2].

• By using the optimization procedure in [3], enhanced TMOKE values with very narrow Fano-like 
resonant peaks can be achieved

• These Fano-like resonances are extremely sensitive to the refractive index of the surrounding media, 
thus allowing to detect very small changes in the dielectric properties of the analyte.

Magnetoplasmonic Crystals for the Design of Highly 
Sensitive Plasmonic (Bio)sensing Platforms

[3] B. Caballero et al. ACS Photonics 2016, 3, 203−208
[2] J. Pistora et al. Opt. Express 2013, 21, 21741.

[1] B.F Diaz-Valencia et al. ACS Omega, 2 (11), 7682–7685, 2017

a 1D Au grating grown on a 
magneto-optical metallic substrate 
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Another example: DNA mapping with nanopipete (SERS and TERS) 

Gold-Glass nanopipete
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Another example: DNA mapping with nanopipete (SERS and TERS) 

Gold-Glass nanopipete
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