Nonlinear Optics in Silicon Photonics

Klaus Petermann

E-Mail: petermann@tu-berlin.de

Acknowledgement

TU Berlin

J. Bruns, G. Dziallas, A.Gajda, M. Jazayerifar, C. Stamatiadis, K. Voigt, B. Wohlfeil

IHP

R. Barth, J. Drews, M. Fraschke, O. Fursenko, T. Grabolla, B. Heinemann, D. Knoll, M. Kroh, A. Krüger, M. Lisker, S. Lischke, S. Marschmeyer, D. Micusik, P. Ostrovskyy, D. Petousi, H.H. Richter, K. Schulz, H.Tian, B.Tillack, A. Trusch, G.Winzer, Y. Yamamoto, L.Zimmermann

HHI

R. Elschner, T.Richter, C.Schubert

DTU

F. Da Ros, D. Vukovic, C. K. Dalgaard, M. Galili, C. Peucheret (now University Rennes)

University of Virginia

A.Beling, Q. Zhou

TU Wien

B. Goll, H. Zimmermann

University of Southampton

D. J. Thomson, F. Y. Gardes, Y. Hu, G. T. Reed

PHOTLINE H. Porte

Photonic BiCMOS

Introduction to Photonic BiCMOS

Nonlinear Optical Signal Processing using Photonic BiCMOS Devices

BiCMOS

Electronic Photonic Integrated Circuit

Joint Lab Silicon Photonics

Prof. Bernd Tillack

TECHNISCHE UNIVERSITÄT

BERLIN

Prof. Klaus Petermann

Pilot line 0.25µm/0.13µm SiGe BiCMOS

SG25H1 npn-HBTs up to f_t/f_{max} =180/220GHz

SG25H3 npn-HBTs up to f_t/f_{max} =110/180GHz $V_{breakdown}$ up to 7V

SG13S

npn-HBTs up to f_t/f_{max}=250/300GHz 3.3V I/O CMOS 1.2V logic CMOS

SG13G2 f_t/f_{max} =300/500GHz

Si - Photonics Development Lines

TECHNISCHE

UNIVERSITÄT

BERLIN

.

IHP Si-Photonics technology

Coupling via Grating

Grating coupler:

- No need for a polished facet
- Wafer scale testing
- Wafer-level packaging
- Compatible with SMF
- Flexible and cheap

D. Taillaert et. al., IEEE J. Quantum Electron., vol. QE38 (2002), pp. 949 - 955

Present optical i/o

UNIVERSITÄT

BERLIN

Linear enhanced ~10µm spot 0 Coupling Lossl [dB] -19,00 -18,00 -17,00 -15,00 -14,00 -12,00 -10,00 -0,000 -0 Si+ Si -4 Si overlay ED (-axis [µm] -8 -2 -6 -12 Enhanced 1d-Grating -10 -10 y-axis [µm] 1.58 1.54 1.56 1.60 Wavelength [µm] **TECHNISCHE**

Germanium photodetectors

Ge waveguide photodiode

Cross section

S. Lischke IEEE Phot. Conf., San Francisco, 2012

WG-coupled Ge lateral PIN PD

Nice dark current behavior

TECHNISCHE

BERLIN

 30(+) GHz (-3dB) bandwidth 0.6(+) A/W internal responsivity @ λ = 1.55µm

Photonic BiCMOS substrate issue

Photonic components need SOI for low loss!!

<u>but</u> "optimum for photonics" SOI dimensions are by far not optimal or even unfit for SOA-CMOS and, fortiori, SOA-BiCMOS!!

<u>CMOS</u>: both Si (220nm) and SiO₂ layer (2µm) much too thick

<u>HBT:</u> Si layer much too thin for a low- R_c collector fabrication; bad head dissipation due to higher R_{TH} of SiO₂, compared to Si

Photonic BiCMOS substrate issue

Photonic components need SOI for low loss!!

but "optimum for photonics" SOI dimensions are by far not optimal or even unfit for SOA-CMOS and, fortiori, SOA-BiCMOS!!

CMOS: both Si (220nm) and SiO₂ layer (2µm) much too thick

HBT: Si layer much too thin for a low-R_c collector fabrication; bad head dissipation due to higher R_{TH} of SiO₂, compared to Si

Solution: "Local-SOI"

enables integration of best of Si-photonics into best Bi(CMOS)!!

Local-SOI fabrication

- Locally removing SOI structure by RIE / wet etch sequence
 Optimizing to ket
- Selective Si epitaxy
- Planarization by Si-CMP

Optimizing to keep usual device yield numbers of parent BiCMOS process!!

D. Knoll et al., ECS Transactions, 50, 9, pp. 297-303 (2012)

TECHNISCHE UNIVERSITÄT

BERLIN

Receiver EPIC

Photonic BiCMOS (SG25<u>H1</u>): Receiver (Ge-PD + SiGe-TIA)

Receiver EPIC

Photonic BiCMOS (SG25H1): Receiver (Ge-PD + SiGe-TIA)

Fachgebiet Hochfrequenztechnik

D.Knoll et al, OFC 2014

Receiver measurement results (I)

TECHNISCHE UNIVERSITÄT

BERLIN

- On wafer characterization
- Setup limitations
 - Incoupling angle
 - Incoupling power
- Reduced coupling efficiency
- 12-15 GHz bandwidth
- fits to 20(+) Gbps functionality

D.Knoll et al, OFC 2014

Receiver measurement results (II)

Eye diagrams for received data

2³¹-1 PRBS word length

Nicely opened eye still at 25Gbps

- Sampling oscilloscope with 70 GHz sampling head
- Scale: vertical 20mV/division, horizontal 20ps/div

D.Knoll et al, OFC 2014

Coherent Receiver

Coherent receiver with integrated TIAs, see G.Winzer et. al. Paper M3C.4, OFC 2015, 23rd March 2015

Modulator with 10Gbit/sec driver

Phase shift + tuning

L. Zimmermann et al, ECOC 2013

Photonic BiCMOS: Driver + Mach-Zehnder modulator

10Gb/s data input and power supply pads

Photonic BiCMOS

Nonlinear Optical Signal Processing using Photonic BiCMOS Devices

Waveguides for Kerr-related nonlinear signal processing

Material No	onlinear coefficie γ [W ⁻¹ m ⁻¹]	ent
HNLF	0.02	
Si ₃ N ₄	1.4	D.J. Moss et al.; Nature Photon., vol.7, pp. 597-607, August 2013
Chalcogenide glass	10	R. Neo et al.; Optics Express, vol. 21.,pp. 7926-7933, April 2013
SOH (Silicon-organic-hybrid)	100	C. Koos et al.; Nature Photon. Vol. 3, pp. 216-219, April 2009
c-Si-nanowire (crystalline)	300	
a-Si-nanowire (amorphous)	1200	C. Grillet et. al.; Optics Express, vol. 20,pp. 22609-22615. 2012

c-Si for Kerr-related nonlinear optical signal processing

• High nonlinearity $\gamma \sim 300 \text{ W}^{-1}\text{m}^{-1}$

- Low loss down to α ~ 0.3 dB/cm

• 100m HNLF ↔ 1cm Si nanowire

negative

positive

- Two photon absorption $\beta_{TPA} \sim 0.5 \dots 1 \text{ cmGW}^{-1}$
 - Free carrier absorption due to TPA

Nonlinear loss mechanisms in silicon

Operation at telecom wavelengths ~ 1.55 μm

- Two-photon absorption (TPA), λ < 2.12 µm
- Free carrier absorption (FCA)
- Free carrier induced index change (FCI)

Limitations due to Two-Photon-Absorption

For telecom wavelengths @ 1.55 µm

- Absorption $\alpha_{TPA} = \beta_{TPA} P / A_{eff}$ due to β_{TPA} negligible up to ~ 100 mW pump power
- Removal of free carriers essential (otherwise only pulsed operation)

Maximum nonlinear phase shift @ 1.55 µm

$$\begin{split} \varphi_{\text{NL}} &= \gamma \ \text{P} \ \text{L}_{\text{eff}} < \gamma \ \text{P} \ / \ \alpha_{\text{TPA}} = \varphi_{\text{NL,max}} \\ \varphi_{\text{NL,max}} &= \ \text{A}_{\text{eff}} \ \gamma \ / \beta_{\text{TPA}} = 2\pi \ \text{FOM} \ \sim \ \text{3 rad} \end{split}$$

allowing for maximum parametric gain ~ 5 dB

- <u>Several optical nonlinear effects in SOI waveguides were</u> <u>observed:</u>
 - -Four Wave Mixing (FWM)^{1,2,3,4,5}
 - –Self Phase Modulation (SPM)⁶
 - -Cross Phase Modulation (XPM)⁶
 - -Spontaneous and Stimulated Raman Scattering (SRS)7,8

• Applications utilizing nonlinear effects:

-Amplification of light

-Optical signal processing, e.g. wavelength conversion

 Y. H. Kuo et al., Opt. Express 14, 2006
 W. Mathlouthi et al., Opt. Express 16, 2008
 M.A.Foster et al., Opt. Express 15, 2007
 A. C. Turner-Foster et al., Opt. Express 18, 2010
 TECHNISCHE UNIVERSITÄT

⁵J. R. Ong et al., IEEE PTL. 25, 1699-1701 (2013)
⁶ Q. Lin et al., Opt. Express 15, 2007
⁷ R. Claps et al., Opt. Express 11, 2003
⁸ M. Krause et al., Opt. Express.12, 2004

Silicon waveguides with reverse biased p-i-n junction

p-i-n junction across the nonlinear silicon waveguide

- Sweep the carriers generated by two-photon absorption
- Reduce effective carriers lifetime down to 10... 20 ps

 \Rightarrow limits the impact of free-carrier absorption

Y.H. Kuo et. al., Opt. Express 14 (2006) 11721 - 11726.
W. Mathlouthi et al., Opt. Express 18 (2008) 16735 - 16745.
J. R. Ong et al., IEEE Photon. Technol. Lett. 25 (2013) 1699 - 1702.

Structure geometry

Parameter	Deep etched waveguide
W x H x s [nm]	500 x 220 x 50
w _i [nm]	1200

Waveguide technology cross section

Fabrication

- Used technology : BiCMOS (IHP Frankfurt (Oder))
- 8" SOI wafers, 220 nm top Si layer and 2 µm buried oxide (BOX)
- Linear loss lower than 1 dB/cm for waveguides with 50 nm slab and p-i-n diode
- Doping level in p and n regions of 10¹⁷ cm⁻³

TECHNISCHE UNIVERSITÄT

BERLIN

Electric field distribution

Shallow rib allows for higher field in the waveguide region

A. Gajda et al., Opt. Express, vol. 19, pp. 9915 - 9922, May 2011

FCA vs Bias voltage for different slab heights

TECHNISCHE UNIVERSITÄT

BERLIN

Carriers screening effect simulation

\checkmark shallower etch depth \Rightarrow higher carrier screening threshold

A. Gajda et al., Opt. Express, vol. 19, pp. 9915 - 9922, May 2011

Photo current due to TPA with reversed pin junction

H. Tian et al., JEOS:RP, Aug. 2012

Free carrier absorption threshold

Four-wave mixing in silicon

Phase matching κ =0 required

TECHNISCHE UNIVERSITÄT

BERLIN

 $\beta_2 < 0$ (anomalous dispersion) corresponds to $d\tau/d\lambda > 0$

$$\kappa = \Delta k_L + \Delta k_{NL} \approx \beta_2 \left(\omega_s - \omega_p\right)^2 + 2\gamma P_p$$

 $2\omega_p = \omega_s + \omega_i$

Silicon waveguides - optical properties

Quantity	Value	Unit
Length	4	cm
Loss	1	dB/cm
TPA coeff.	0.5	cm/GW
Nonlinear coeff.	280	W⁻¹·m⁻¹
Coupling loss*	4.5	dB/facet
Chromatic dispersion	- 2450	ps km⁻¹·nm⁻¹

*1D grating couplers with 35 nm bandwidth

Waveguide parameters not yet optimum for optical signal processing

sign

Four Wave Mixing measurement setup

Conversion efficiency

• Signal output to Idler output ratio

$$\eta = \frac{P_{idler}(L)}{P_{signal}(L)} \quad (**)$$

- used in experimental work (**)
- easy to measure (using Optical Spectrum Analyzer)
- (**) Y. Kuo et al. Opt. Express 14, 11721-11726 (2006)

FWM in p-i-n diode assisted waveguide

Wavelength conversion vs. detuning for different pump wavelengths

Bit Error Rate (BER) Measurement setup

Pump power in the waveguide : 20 dBm Signal power in the waveguide :0 dBm

> TECHNISCHE UNIVERSITÄT

BERLIN

A. Gajda et al., Group IV Photonics 2013

TECHNISCHE UNIVERSITÄT

BERLIN

Wavelength converter output spectra

A. Gajda et al., Group IV Photonics 2013

Measured bandwidth of FWM

- 3 dB bandwidth of 10 nm
- Estimated dispersion of the waveguide
 D = -2450 ps/nm·km
- η_{oL} contains incoupling

 loss of 4 dB per coupler

TECHNISCHE UNIVERSITÄT

BERLIN

Bit-Error Rate measurement

The power penalty of 0.2 dB for idler in the 20V bias case

A. Gajda et al., Group IV Photonics 2013

Phase-sensitive Signal Processing

TECHNISCHE UNIVERSITÄT

BERLIN

Four – wave mixing ($\chi^{(3)}$)

Phase - sensitive parametric processing (one mode PSA)

Processing of the signal becomes phase - sensitive

Phase sensitive amplification - set up

Evidence of phase-sensitivity in Si

Phase sensitive extinction ratio optimisation

pump power

waveguide length

Phase regeneration for 10 Gbit/s DPSK

Phase-sensitive regenerator DPSK output spectrum

TECHNISCHE UNIVERSITÄT

BERLIN

F. Da Ros et al., Opt. Express 22 (2014) 5029.

BER evaluation for phase-regeneration

Conclusions

Successful electronic-photonic BiCMOS co-integrated circuits have been demonstrated

FIRST DEMONSTRATIONS

10Gb/s modulator + driver

25Gb/s Germanium PD + TIA

Si-nanowaveguides with pin-junctions allow for advanced all-optical signal processing

-Highly efficient wavelengh conversion

-Phase sensitive parametric amplification

