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A miniature in-line fiber-optic Fabry-Perot etalon is fabricated on a photonic crystal fiber (PCF) by using
157 nm laser micromachining for the first time to our knowledge. Experimental results show that such a
PCF-based etalon has an excellent fringe visibility of up to ~26 dB due to the mirror-finish quality of the
two cavity surfaces inside the PCF. This etalon can be used as an ideal sensor for precise strain measure-
ment under high temperature of up to 800°C. It can also offer some other outstanding advantages, such as
fast and easy fabrication, high reproducibility, capacity of mass production, low cost, low temperature-strain

cross-sensitivity, and high signal-to-noise ratio. © 2007 Optical Society of America
OCIS codes: 060.2340, 060.2370, 140.3390.
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Fibre Fabry-Perot

Fibre Bragg Grating
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Ebased on Fibre Bragg Grating
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Ebased on Fibre Bragg Grating
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Bbased on Fibre Bragg Grating
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Bbased on Fibre Bragg Grating
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Fabry-Pérot cavities

Chemical etching
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@er FP based on chemical etching
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@er FP based on chemical etching
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@er FP based on chemical etching
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@er FP based on chemical etching
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@er FP based on chemical etching
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@er FP based on chemical etching
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the same temperature range and a
wavelength shift was observed as the
temperature changed. In this case, the
sensitivity is of ~9 pm/k.
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Fabry-Pérot cavities
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@pended core fibre
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@pended core fibre

Normalized optical power

1,0 E

o
~
Trepeer

LTy

wavelength (nm)

25




INESC

@pended core fibre
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@pended core fibre

Suspended core
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Suspended core fibre
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@pended core fibre
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@pended core fibre
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Fabry-Pérot cavities

Focused lon Beam
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@ucture Forming Fibers (SFF)

* P,0O.-doped fibers;
* Much higher etching rate than pure silica;

Si07

P,0:-doped
g
\ / 90 pm

INESCPOF
A

19.5 um
18 um " -
100w 125 um
- 140 um

INESCTEC

ASSOC

R. M. André, et al, Focused ion beam post-processing of optical fiber Fabry-Perot cavities for sensmg
applications, Optics Express, 22 (11), 13102-13108, June 2014




LEtchmg

SME-SFF fusion-splicing;
b) Cleaving to desired SFF
length;
c) cMMEF-SFF fusion-splicing;

SFF U SMF

@ 1

N

d) Cleaving cMMF (30-40
um);
e) Etching;

33




@mically Etched Devices
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@— Indented Fabry-Pérot

* Fabry-Pérot Cavities with a length of 170 um;
* Different indentation lengths;

Ricardo Andre FIB HV: 30.00 kV I R R A R | Ricardo Andre WD: 11.48 mm LYRA\ TESCAN
FIB MAG: 568 x Det: SE Detector 100 pm LYRA\TESCAN ggi SEM MAG: 1.17 kx Det: SE Detector 50 ym 7
Date(m/dfy): 11/21/13 Ricardo Andre IPHT Jena n View field: 236.4 um  Date(m/d/y): 12/04/13 IPHT Jena n
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FIB — Fabry-Pérot Cantilever
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@tical Spectra

Broadband
Optical Source

* Simple reflection setup;

 Different length @)E

cavities;
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Temperature Characterization

e Similar quadratic
temperature responses;

T T T
¢ FP Cavity
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@ration Results

* Acoustic vibrating system;
 Tunable laser;
 Photodiode.
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@ncluding remarks

Today, FP cavities in microstructured fibre present
new challenges in optical fibre sensors namely in gas
or liguids measurements and it will be expected its
use in applications for medical solutions.

85 um 61 pm
(a) Microscope image (b) Microscope image
Shen Liu, et al, High-sensitivity strain sensor based on in-fiber rectangular

air bubble, Nature vol. 5, no. 7624, 2015. doi:10.1038/srep07624.
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